SONGYI DERMA BLANC
FOR NOVEL FAIRNESS SKIN-WHITENING

novel functional ingredients for multi-purpose formulations

CAMPO RESEARCH
Level 30, 6 Battery Road
Singapore 049909
Tel: (65) - 63833203 / 2 / 63833631 Direct
Fax: (65) – 63834034 / 63833632 / 63824680
Internet-Video-Phone Teleconferencing:campo@publ1.ipn.vocaltec.com-For Technical Assistance
e-mail: sales@campo-research.com
website: http://www.campo-research.com
CAMPO ® Multi-Purpose Cosmetic Base Chemicals & Active Ingredients
CAMPO ® Novel Functional Active Cosmetic Ingredients and Raw-Materials
Fairness Whitening properties of SONGYI Derma Blanc

Consumer demand for plant derived ingredients is gaining popularity. This keen interest from natural active materials has affected scientists in the cosmetic industry to come up with fairness whitening agents from these natural sources. Toward these developments, cosmetic companies combine a fairness whitening main active and other plant extracts to enhance the efficacy of their products. One remarkable observation that has been proven effective and has a perceivable result is the inclusion of the SONGYI Derma Blanc, an unique Extract blend of the components of Tricholoma Matsutake mushroom (Matsutake mushroom) and Glycyrrhiza uralensis (syn. Glycyrrhiza glabra of Ural Mts. Licorice plant) extracts.

The main active component of Matsutake mushroom is polysaccharides (polysaccharides’ linked enzymes) and licorice extract is glabridin. Both substances in their own unique individual characteristics and in combination inhibits tyrosinase activity, DOPA chrome tautomerase and spontaneous conversion, while also preventing melanin formation.

Tyrosinase is an enzyme relating to the formation of melanin. In Melanocytes, tyrosinase is synthesized in the lysosome on the surface of the rough-surfaced endoplasmic reticulum. Then, it is modified by saccharide and activated in Golgi-associated endoplasmic reticulum of lysosome (GERL). Activated tyrosinase is secreted as a coated vesicle from GERL and is fused with premelanosome. Promelanosome is considered to be formed in Golgi body or smooth-surfaced endoplasmic reticulum. Melanin formation progresses in this way and melanosome is filled with polymerized melanin polymer.

It has been said that tyrosinase is the only enzyme which is related to the melanin formation. Synthesis after Dopaquinone is considered to be spontaneously occurred. However, recent research indicates that there are three kind of enzyme including tyrosinase, which is related to the melanin formation.

It is reported that in melanin formation pathway by way of 5,6-dihydroxyindole-2-carboxylic acid (DHICA), DOPA-chrome to DHICA. Likewise the existence of DHICA oxidase or TRP1 is reported. It catalyzes the conversion of DHICA into Indole-5, 6-quinone-2-carboxylic acid. In addition, these two enzymes have the function to stabilize tyrosinase. In addition to the inhibition of tyrosinase activity, the inhibition of the activity of these two enzymes would be another important key issue for the development of whitening products.
Technical Specifications:

- **CAMPO SONGYI DERMA BLANC™**
 Skin-Whitening Fairness Activity Without Irritation for Fairness Soap Bars, Liquid Soaps, Fairness Shower Gel, Fairness Facial Foam, Fairness Creams, Fairness Serum & Fairness Lotions

Other Name: LICORICE GLABRIDIN MATSUKATE POLYSACCHARIDAL ENZYMES EXTRACT

INCI Name (Proposed):
Mushroom extract (Tricholoma matsutake Singer) (AND) Polysaccharides (AND) Alcohol (AND)
Water (AND) Glycyrrhiza Glabra Licorice Extract (AND) Glycerin (AND) Saccharide Hydrolysate

- **Product #:** 20030210 LFAI
- **Species:** Tricholoma matsutake Singer And Glycyrrhiza Glabra L.
- **Parts Used:** Mycelium of whole fresh mushrooms and Roots of Licorice plant

- **Appearance:** Viscous slow flowing Buff yellowish liquid
- **Odor:** Characteristic with faint-alcoholic
- **Specific Gravity (20 deg.C):** 1.200 - 1.350
- **Refractive Index (20 deg.C):** 1.200 - 1.500
- **pH (20°C):** 2.5-4.5
- **Solvent(s):** Carbon dioxide gas deionised at critical temp.,
- **Carrier menstrual (vehicle):** Ethanol 0.1%, Water 2.0%, Glycerine 2%,
- **Preservative:** None
- **Synthetic Anti-oxidants:** None
- **Water Solubility:** 20%
- **Total Germs,(WHO standard):** < 100 cfu/ml Non-pathogenic
- **Total Yeast / Molds:** < 100 cfu/ml
- **Heavy Metals(total) Pb, As, Hg:** < 0.005 PPM

Comments:
Dissolve about >1.5% - >5% for skin-whitening soaps (perceivable effective dosage recommended: > 1.5% w/w)
Up to >10% w/w to the formulation for Skin-Whitening Cremes and Lotions

Shake Well or Agitate thoroughly the containers before Use or Addition to the Soap Noodles at the mixer stage or to Cream Formulations

Storage
Darkening of this material may be experienced, if stored more than 12 months at > 45 Degrees Centigrade and exposure to atmosphere, without lids being airtight. Long term storage (>12 months) is recommended in airtight containers in a cool and dark place.
Shake Well or Agitate thoroughly the containers before Use or Addition to the Soap Noodles at the mixer stage or to Cream Formulations
Major Fairness Whitening Cosmetics in Japan and Asia with Licorice Extracts and Matsutake Mushroom (SONGYI) Extracts.

<table>
<thead>
<tr>
<th>Company</th>
<th>Product Name</th>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiseido Kose</td>
<td>Whitess Essence EX Whitening Serum FX</td>
<td>Licorice, Licorice, Alpha-ceramidein (as AHA)</td>
</tr>
<tr>
<td>BKP Indonesia</td>
<td>SHINZU’I Fairness</td>
<td>Matsutake mushroom Extract</td>
</tr>
<tr>
<td>Godrej India</td>
<td>FAIRGLOW Fairness</td>
<td>Matsutake mushroom Extract</td>
</tr>
<tr>
<td>Mendora London</td>
<td>Tibet Snow Fairness</td>
<td>Matsutake mushroom Extract</td>
</tr>
<tr>
<td>Pakistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christian Dior</td>
<td>Clair de Dior Expert</td>
<td>Licorice, Enzymes Coupled Vitamin C (Vitamin C Derivative)</td>
</tr>
<tr>
<td>Chanel</td>
<td>Blanc Pur-Whitening Serum</td>
<td>Vitamin C (Enzymes Coupled Vit. C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Licorice</td>
</tr>
</tbody>
</table>
Inhibitory effect of SONGYI Derma Blanc on:

A. Tyrosinase

<table>
<thead>
<tr>
<th>Conc. Ext. (mg/ml)</th>
<th>Melanin Formation*</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26 ± 3</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>-3 ± 1</td>
<td>110 ± 4</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>10 ± 1</td>
<td>59 ± 4</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>24 ± 2</td>
<td>5 ± 8</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>26 ± 2</td>
<td>0 ± 8</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>25 ± 2</td>
<td>3 ± 8</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>30 ± 2</td>
<td>-15 ± 8</td>
</tr>
</tbody>
</table>

pmol/24h/1.5x10^6 cells

SONGYI Derma Blanc was added to B16F10 derived Tyrosinase, and melanin formation was measured using 14C-tyrosine.

B. Culture Cell

<table>
<thead>
<tr>
<th>Conc. Ext. (mg/ml)</th>
<th>Melanin Formation*</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>398 ± 20</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>165 ± 10</td>
<td>60 ± 3</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>237 ± 18</td>
<td>41 ± 5</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>319 ± 24</td>
<td>20 ± 6</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>364 ± 30</td>
<td>8 ± 8</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>389 ± 17</td>
<td>2 ± 4</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>394 ± 12</td>
<td>1 ± 3</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>410 ± 24</td>
<td>-3 ± 6</td>
</tr>
</tbody>
</table>

pmol/24h/1.5x10^6 cells

HM-3-KO human melanoma cells were cultured with DMEM which contains Campo Songyi Derma Blanc (Songyi and Licorice Extracts Blend). After 3 days the cells were harvested, solubilized and the melanogenic activities were measured using 14C-tyrosine.
C. DOPAchrome Tautomerase

<table>
<thead>
<tr>
<th>Conc. Ext. (mg/ml)</th>
<th>DOPAchrome Tautomerase Activity*</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>323 ± 24</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>95 ± 10</td>
<td>71 ± 3</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>82 ± 8</td>
<td>75 ± 2</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>82 ± 6</td>
<td>75 ± 2</td>
</tr>
</tbody>
</table>

* nmol/24h/1.5x10^6 cells

HM-3-KO human melanoma cells were cultured with or without Songyi Derma Blanc (Songyi & Licorice Extracts Blend) for 3 days. Then the cells were harvested, solubilized and DOPAchrome tautomerase activity was measured by the concentration of DHICA using HPLC.

D. DHI Production

<table>
<thead>
<tr>
<th>Conc. Ext. (mg/ml)</th>
<th>Spontaneous DHI Production*</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.0 ± 2.6</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td>4.2 ± 0.8</td>
<td>70 ± 6</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>3.3 ± 0.7</td>
<td>76 ± 5</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>3.1 ± 0.8</td>
<td>78 ± 6</td>
</tr>
</tbody>
</table>

* µg/h/1.5x10^6 cells

HM-3-KO human melanoma cells were cultured with or without Songyi Derma Blanc (Songyi & Licorice Extracts Blend) for 3 days. Then the cells were harvested, solubilized and spontaneous DHI production was measured by the concentration of DHI using HPLC.

SONGYI Derma Blanc was also safety tested using a variety of in vivo and vitro protocols. The CAMVA was used to determine irritancy. This in vitro assay determines the irritancy of a test compound based on its ability to induce hemorrhage on the chorioallantoic membrane of a chicken egg. Two other in vitro tests were run on Songyi Derma Blanc - EpiDerm and Epi-Ocular. EpiDerm is a three-dimensional system composed of human epithelial cells to which the test compound is applied. After incubation, the number of viable cells is measured using the MTT conversion assay.

An ET_{50} is determined, which gives an idea of potential skin toxicity. EpiOcular is a three-dimensional system composed of stratified human keratinocytes to which the test material is applied. After incubation, the number of viable cells is measured.
using the MTT conversion assay. An ET_{50} is determined, which gives idea of possible ocular irritation. Results are shown in Figure I.

Figure 1. in vitro Toxicology
References: Licorice

Vaya J, Belinky PA, Aviram M, Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation, *Free Radic Med 1997;23(2):302-313*

Cooney AS, Fitzsimons JT, Increased sodium appetite and thirst in rat induced by the ingredients of liquorice, glycyrrhizic acid and glycyrrhetinic acid, *Regul Pept 1996 Oct 8;66(1-2):127-133*

Saito K, Molecular genetics and biotechology in medicinal plants: studies by biotechnological plants, *Yakugaku Zasshi* 1994 Jan;114(1):1-20

Chen XG, Han R, Effect of glycyrrhetinic acid on DNA damage and unscheduled DNA synthesis induced by benzo (a) pyrene, *Yao Hsueh Pao* 1994;29(10):725-729

References: Matsutake (SONGYI)

Japanese Chuyaku Daijiten, Vol 1-8, Shogakkan Co Ltd, Tokyo, Japan
《日本大词典》第1至8卷，小学馆出版有限公司，日本东京

Arora, David, Mushrooms Demystified (2nd ed.), Ten Speed Press, Berkeley, CA, 1988
大卫·阿若拉，《揭开松茸之谜》（第二版），十速出版社，1988年加利佛尼亚伯克利

Bo, Lui, Fungi Pharmacopoeia, Kinoko Co, PO Box 8426, Oakland, CA
雷波，《真菌类植物药典》，Kinoko 公司，加利佛尼亚奥克兰8426信箱

H·瓦格纳和A·普罗什，“真菌及高级植物制成的免疫刺激药物”，刊于《经济及药用植物研究》，1988年学术出版社，纽约

Kaji,J.et al., Bioscience, Biotechnology and Biochemistry, 1993, 57, (3), (Mar), 363–366
J·鹿地等，《生物科学、生物技术和生物化学》，1993, 57, (3), (三月)，第363–366页

Iwase, K., Canad. J. of Botany, 1992, 70, (6) (Jun), 1234–1238
K·岩濑，《加拿大植物学学刊》，1992, 70, (6) (六月)，第1234–1238页

R·横山等，《日本真菌学学会转录》，1987, 28, (3)，第331–338页

C·H·基姆，《韩国林学学会会刊》，1986, (64)，第33–41页

M·安倍，《农业和生物化学》，1982, 46, (7)，第1955–1957页

T·S·李，《森林科学与技术》，韩国，1986, 11, (6)，第37–44页

马嘎加，《科罗拉多大学农业及食品化学学刊》，1981, 29, 第1–4页

M·Y·皮约，《韩国营养学学刊》，1975, 18, (1)，第47–59页

P·W·布莱恩，《英国真菌学学会转录》，1972, 58, (3)，第359–375页
DISCLAIMER:

The information contained herein is accurate to the best knowledge and belief of Campo Research Pte Ltd, and specification quoted may change without prior notice. Information contained in this technical literature is believed to be accurate and is offered in good faith for the benefit of the customer. The company, Campo Research Pte Ltd, however, cannot assume any liabilities or risks involved in the use of its natural products or their derivatives or raw materials or ingredients, since the conditions of use are beyond Campo Research Pte Ltd's control. Statements concerning the possible use are not intended as recommendations to use our materials in the infringement of any patents or infringements of mandatory regulatory requirements or without any safety evaluations conducted when used in combination with materials of other suppliers. We make no warranty of any kind, expressed or implied, other than that the material conforms to the applicable standard specifications.

Campo Research Pte Ltd accepts no liabilities of whatsoever either expressed or as otherwise arising out of the information supplied, the application, adaptation or processing of the products described herein, or the use of other materials in lieu of the Campo materials or the use of Campo raw materials or ingredients in conjunction with any other products and raw materials. The use of Campo Research Pte Ltd's raw materials or ingredients in any formulations are to be compulsory tested and to be assayed for safety and toxicology profiles evaluations and according the mandatory regulations as required by the laws and regulations of the countries where the evaluation and use of Campo Research Pte Ltd's raw materials or ingredients has been formulated as single components in any carrier systems or as in multi-components formulations. The end-users, marketers; manufacturers, formulation laboratories or importers of Campo Research Pte Ltd's raw materials and ingredients which are incorporated into any formulations as formulated or re-sold or re-exported or assayed in accordance with any mandatory regulatory requirements of any country or infringement of any patents assume all liabilities as that may arise out of the use of Campo Research Pte Ltd's raw materials and ingredients in any formularies in combination with raw materials and ingredients of other suppliers or as single components in any carriers. The definition of users as mentioned in these instances are manufacturers, marketers, formulation laboratories, consultants, and importers assumed all liabilities arising as either personal injuries suits, infringements of patents suits, infringements of or failures to meet regulatory requirements suits of a formulary either as single components in any carrier systems or in as multi-components formularies in which are may consist of a Campo Research Pte Ltd's raw material or ingredients.

IMPORTANT NOTICE

Specifications may change without prior notice. Information contained in this technical literature is believed to be accurate and is offered in good faith for the benefit of the customer. The company, however, cannot assume any liability or risk involved in the use of its natural products or their derivatives, since the conditions of use are beyond our control. Statements concerning the possible use are not intended as recommendations to use our products in the infringement of any patent. We make no warranty of any kind; expressed or implied, other than that the material conforms to the applicable standard specifications.